

"Non-detection of a statistically anisotropic power spectrum in large scale structure" JCAP 05, 27 (2010)

Outline

- * Introduction
- * Previous Work
- * Model/Data
- * Quadrupole Estimators
- * Results/Systematics
- * Luminous Red Galaxies (LRG) vs CMB Results
- * Summary

Introduction

- * Statistical Isotropy (SI) variance of perturbations is direction-independent
- * Standard Cosmology
- * Template for analysis

Introduction

- * Statistical Anisotropy (SA) variance of perturbations varies with direction
- * Nonstandard Cosmology many possible sources

Statistical Isotropy

Quadrupolar Asymmetry

Previous Work

- * Searches for Statistical Anisotropy in the CMB
- * Quadrupole/Octopole Alignment behaves like globally random anisotropy
- * Dipole Asymmetry not significant when marginalized over choice of dipole cutoff
- * Quadrupolar Anisotropy alignment with ecliptic suggests systematic effect, e.g. beam asymmetry

- * Galaxy surveys
- * Complement CMB probes of SI
- * Probe anisotropy at low redshift
- * Transcend limits of CMB foregrounds

SDSS DR7 Image

$$\langle \delta(\mathbf{k}) \delta^*(\mathbf{k}') \rangle = (2\pi)^3 \delta_D(\mathbf{k} - \mathbf{k}') P(k)$$

gaussian isotropic

$$\langle \delta(\mathbf{k}) \delta^*(\mathbf{k}') \rangle = (2\pi)^3 \delta_D(\mathbf{k} - \mathbf{k}') P(\mathbf{k})$$

gaussian anisotropic

$$P(\mathbf{k}) = \bar{P}(k) \left[1 + \sum_{LM} g_{LM}(k) R_{LM}(\hat{\mathbf{k}})\right]$$
 isotropically averaged

multipolar anisotropymoment real-valued spherical harmonics

* Our model: scale-invariant quadrupolar anisotropy with linear bias

$$\bar{P}_g(k) = b_g^2 \bar{P}(k)$$

$$P(\mathbf{k}) = \bar{P}(k) \left[1 + \sum_{M=-2}^2 g_{2M} R_{2M}(\hat{\mathbf{k}}) \right]$$

- * First-order correction (only even L allowed)
- * Motivated by Ackerman, Carroll, Wise (ACW) inflation model Ackerman et al. 2007

- * Angular power spectra used in anisotropy estimate
- * Luminous red galaxies (LRGs) used as tracers
- * 8 photometric z-slices with $\Delta z = 0.05$
- * 1.4 million pixels, 12 sqr arcmin each
- * Prior spectra calculated using fiducial values

Project $\delta_g(\mathbf{x})$ to z-slice and find covariance

$$\delta_g(\mathbf{\hat{n}}) = \int d\chi f(\chi) \delta_g(\mathbf{x} = \chi \mathbf{\hat{n}})$$

$$C_g(\hat{\mathbf{n}}, \hat{\mathbf{n}}')|_{\mathrm{SI}} = C_g(\theta)$$

$$= \sum_{l} \frac{2l+1}{4\pi} C_{g,l} P_l(\cos \theta)$$

angular power spectrum

- * Goal: Estimate $C_{g,l}$ and g_{2M} at all redshift slices
- ***** Parameters: \tilde{C}_n and g_{2M}

$$C_{g,l} = \sum_{n=1} \tilde{C}_n \eta_l^n$$

Parameter vector Fisher Quad vector

$$\mathbf{C} = \sum_{i=1}^{N_t} p_i \mathbf{C}_{,i}$$

* Noise: Poissonian (1/ngal)

- * Monte Carlo simulations to test estimator
- * 50 simulations of $\delta_{g,lm}$ for z-slice z00 (z=[0.2,0.25])
- * Test with SI: $g_{2M} = 0, \forall M$
- * Test with SA: use $g_{20} = 0.5$
- * Noise: $C^N = 1/n_{\rm gal} \simeq 6.7$

- Incompatible with zero
- * Varies with redshift
- * Fix with modulation

$$\delta'(\hat{\mathbf{n}}) = \left[1 + \sum_{M=-2}^{2} h_{2M} R_{2M}(\hat{\mathbf{n}})\right] \delta(\hat{\mathbf{n}})$$

Minimum Variance Estimator

- * Error estimates from N-body simulations
- * Includes z-slice covariances and nongaussianity effects
- $* C_{M,M'}$ were also calculated

* Groeneboom et al. investigate ACW model using **WMAP**

$$P(\mathbf{k}) = P(k)[1 + g_*(\mathbf{\hat{k}} \cdot \mathbf{\hat{n}})^2]$$
 amplitude preferred axis

$$g_{2M} = \frac{8\pi}{15} g_* R_{2M}(\hat{\mathbf{n}})$$
 Not directly invertible

* Construct estimator for g_*^{LRG}

$$\hat{g}_* = \frac{15}{8\pi} \frac{\sum_{MM'} [C^{-1}]_{MM'} \hat{g}_{2M} R_{2M'}(\hat{\mathbf{n}})}{\sum_{MM'} [C^{-1}]_{MM'} R_{2M}(\hat{\mathbf{n}}) R_{2M'}(\hat{\mathbf{n}})}$$

* Must choose a preferred direction for estimator

CMB

LRG

WMAP W band

$$(l,b) = (94^{\circ}, 26^{\circ})$$

 $g_*^{\text{CMB}} = 0.29 \pm 0.031$ $g_*^{\text{LRG}} = 0.006 \pm 0.036$

$$(l,b) = (94^{\circ}, 27^{\circ})$$

WMAP V band $g_*^{\text{CMB}} = 0.14 \pm 0.034$ $g_*^{\text{LRG}} = 0.007 \pm 0.037$

Asymmetry in direction of the Ecliptic

- * WMAP result could be due to beam asymmetries
- * Hanson and Lewis show effect could produce result; disputed by Groeneboom et al.
- * WMAP team hopes to complete full simulation of beam asymmetry effect
- * Already accounted for in power spectrum estimator

- * Can different values for g_{2M} be due to k-variance?
- * Variance with number of e-folds: $g_{2M} \propto \ln k$
- * Calculate k_{eff} that makes k-invariant estimator correct
- * k_{eff} : 0.020 Mpc⁻¹ (CMB), 0.15 Mpc⁻¹ (LRG)
- * Differ by 2 e-folds; too small for 100x difference

* Construct Bayesian estimator with n marginalized

$$\mathcal{L}(g_*) = \int \exp\left\{-\frac{1}{2} \sum_{MM'} [C^{-1}]_{MM'} \left[\hat{g}_{2M} - \frac{8\pi}{15} g_* R_{2M}(\hat{\mathbf{n}})\right]\right\} \times \left[\hat{g}_{2M'} - \frac{8\pi}{15} g_* R_{2M'}(\hat{\mathbf{n}})\right] d^2\hat{\mathbf{n}}$$

* Assume uniform priors

* 68% C.L.:
$$-0.12 < g_* < +0.10$$

* 95% C.L.:
$$-0.41 < g_* < +0.38$$

Summary

- * We searched for SA in the galaxy distribution
- * We found no evidence for SA in the LRG sample
- * This confirms the WMAP anisotropy is not of primordial origin
- * We constrain $-0.41 < g_* < +0.38$ with 95% confidence
- * Looking ahead: future surveys (BigBOSS) may be able to constrain g_* another order of magnitude